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Abstract. We analyze the spectra of theories that are ω-stable, theories

whose spectra include almost every degree, and theories with uniformly arith-
metical n-quantifier fragments. We answer a question from Andrews and

Miller [2] by showing that there are ω-stable theories whose spectra are not

structure spectra. We show that the spectrum created in Andrews and Knight
[1] is not the spectrum of an ω-stable theory, but is the minimal spectrum of

any theory with uniformly arithmetical n-quantifier fragments. In addition,

we give examples of theory spectra that contain almost every degree, including
ones that are known not to be structure spectra.

1. Introduction

A large body of work in recursive structure theory has been devoted to under-
standing when a given structure M has a recursive copy, and if it has none, then
to classify the set of Turing degrees of copies of M , called the spectrum of M . A
similar notion is the spectrum of a complete first-order theory, which is the set of
Turing degrees of models of the theory. In rare special cases, spectra of theories
have been characterized. For example, Solovay [13] characterized the spectra of
completions of Peano arithmetic (PA).

Andrews and Miller [2] began the study of comparing the two notions. In par-
ticular, they showed that there are spectra of theories that are not spectra of
structures and vice versa. All of their examples of spectra of theories that are not
spectra of structures had the property that they could not be spectra of atomic
theories. They asked first whether there are atomic theories whose spectra are not
structure spectra, and second whether there are ω-stable theories whose spectra are
not structure spectra. A countable theory is ω-stable if, for any model M , there
are exactly |M | many types over M . Andrews and Knight [1] answered the first
question affirmatively by constructing a theory whose spectrum is exactly the set
of degrees of nonstandard models of true arithmetic (TA), and showing that this
collection is not a structure spectrum.

We show in Theorem 2.1 that the spectrum constructed by Andrews and Knight
is not the spectrum of an ω-stable theory and thus cannot be used to answer the
second question. However, we then answer the second question affirmatively (see
Section 2.2).
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Theorem 2.13. There is an ω-stable theory T so that Spec(T ) is not a structure
spectrum.

We also examine theory spectra S with the property that S has measure 1. If
Spec(T ) has measure 1, we say T is an almost everywhere theory. This is parallel to
the development of the theory of measure 1 structure spectra. Kalimullin showed
that {d | d 66 b} is a structure spectrum if b is low over a computably enumerable
set (see [6] and [7] for preliminary results). On the other hand, he produced a
b 6 0′′ such that {d | d 66 b} is not a structure spectrum [8]. Andrews, Cai,
Kalimullin, Lempp and Miller (unpublished) provided more examples by proving
that {d | d 66 b} is not a structure spectrum if b is high or non-GL2 over 0′,
so in particular if b = 0′′. We show that unlike in the structure spectrum case,
{d | d 66 b} is a theory spectrum for any arithmetical b. In fact, we prove the
following stronger result.

Theorem 3.7. Let f be a total recursive function. For each j, let Aj be the
arithmetical set with arithmetical index f(j). Then there is a theory T so that
Spec(T ) = {d | ∀j (d 66 Aj)}.

This, in particular, shows that the collection of non-arithmetical sets is a theory
spectrum. It is not known if it is a structure spectrum. This is somewhat surprising
since the set of non-hyperarithmetical degrees is a structure spectrum by Greenberg,
Montalbán and Slaman [4], but is not a theory spectrum by Andrews and Miller [2].

We show in Theorem 3.1 that every almost everywhere theory T has the prop-
erty that T ∩ ∃n is uniformly Σ0

n, and thus there are only countably many almost
everywhere theories. We call such theories Solovay theories. This leads us to ask:

Question 3.4. Which are the degrees contained in every almost everywhere theory
spectrum?

Combining results from the literature, we answer the corresponding question for
Solovay theories.

Theorem 3.5. A Turing degree d is in Spec(T ) for every Solovay theory T if and
only if d computes a presentation of a nonstandard model of TA.

In particular, the theory constructed by Andrews and Knight [1] is a Solovay
theory with minimal spectrum.

1.1. Abstracting relations. The following notion of abstracting relations will be
necessary below in Sections 2.2 and 3.

In order to answer a question of Hodges and Macintyre about the quantifier
complexity of axiomatizations of ℵ0-categorical almost strongly minimal theories,
Marker [12] developed a way to add quantifier-complexity to a theory without
changing its underlying nature. In particular, he developed what are now called
Marker extensions, which preserve categoricity, (ω-/super-)stability, and almost
strong minimality of a theory while adding quantifiers to the definitions of the
important relations.

Given an n-ary relation symbol R with a theory T (in some language L), we
have two types of Marker extensions, T∀,R and T∃,R, defined as follows:

We let T ′R be the following theory:

• L′ is the language obtained by adding to L two new unary relation sym-
bols U and V and a new (n+ 1)-ary relation symbol S.
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• U and V partition the universe into two infinite parts.
• Each symbol of L only holds on tuples from V , and V is a model of T .
• S(x, ȳ)→ x ∈ U ∧ ȳ ∈ V n.
• ∀ā ∈ V n (R(ā)→ ∃!u ∈ U S(u, ā)).
• ∀ā ∈ V n (¬R(ā)→ ¬∃u ∈ U S(u, ā)).
• ∀u ∈ U ∃! ā ∈ V n (S(u, ā)).

T ′R is a complete theory, and T∃,R is the reduct to the language L′ r {R}. Note
that R(x̄) is definable in T∃,R via the formula ∃u ∈ U S(u, x̄). We let T∀,R be T∃,¬R.
This makes R(x̄) ∀-definable in T∀,R. If A |= T∃,R or A |= T∀,R, respectively, and
V A ∼= M holds for the expansion to a model of T ′R, then we say that the T -part
of A is isomorphic to M .

The two-quantifier ∃2-Marker extension of T for the relation R is the theory
(T∀,R)∃,S . The two-quantifier ∀2-Marker extension of T for the relation R is the the-
ory (T∃,R)∀,S . Continuing in this fashion, we can define the n-quantifier ∃n-Marker
extension and the ∀n-Marker extension of T for the relation R. Using the natural
interpretation, we refer to the T -part of a model of these theories as well.

Lemma 1.1 (Folklore). Let M be a model of T such that the atomic diagram of M
in the language L r {R} is recursive in d. Suppose further that RM is Σ0

n in d.
Then the model of the ∃n-Marker extension of T with T -part isomorphic to M is
recursively presentable in d.

Similarly, we can define Marker extensions T(∃n1
,R1),(∃n2

,R2),... for whole collec-
tions of relations by simply abstracting each relation Ri to ni quantifiers as above.
The analogous theorem is as follows:

Lemma 1.2 (Folklore). Let R1, . . . be a recursive list of relation symbols in L, and
let n1, . . . be a recursive list of positive integers. Let M be a model of T such that the
atomic diagram of M in the language Lr{R1, . . .} is recursive in d. Suppose further
that each RMi is Σ0

ni uniformly in d. Then the model of T(∃n1 ,R1),(∃n2 ,R2),... with
T -part isomorphic to M is recursively presentable in d. In fact, such a d-index can
be recursively computed from the index witnessing that each RMi is Σ0

ni uniformly
in d.

2. Spectra of ω-stable theories

Andrews and Miller asked two questions, whether there is an atomic theory whose
spectrum is not a structure spectrum, and whether there is an ω-stable theory
whose spectrum is not a structure spectrum. Andrews and Knight [1] answered
the first question by constructing an atomic theory (in fact a completion of PA)
whose spectrum is precisely the degrees of nonstandard models of TA. By results
of Solovay [13] and Marker [11] on the complexity of models of PA, we know that
this is the set of degrees that compute Scott sets containing all arithmetical sets.
One attempt to answer the second question of Andrews and Miller would be to
show that the same spectrum is also the spectrum of an ω-stable theory. We show
that this is not the case, after which we answer the second question via a different
construction.

2.1. The Andrews–Knight Spectrum.

Theorem 2.1. The set of degrees of nonstandard models of TA is not the spectrum
of an ω-stable theory.
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Proof. We first recall that Andrews and Knight [1, Lemma 15] showed that there
is a representation R of a countable Scott set containing the arithmetical sets and
a permutation G of ω, generic over R, so that R⊕G computes no representation
of the collection of all arithmetical sets. This is proved via forcing to construct a
sufficiently generic pairR, G in a particular forcing partial order P. In particular,R
is a representation of the Scott set {X | ∃k (X 6T 0(k) ⊕ H)} for a fixed Cohen
generic H.

Suppose towards a contradiction that T is ω-stable and Spec(T ) is the set of
degrees of nonstandard models of TA.

Lemma 2.2. Let R be as above and let M be a model of T computable from R.
Then there is an ∃-type realized in M that is not arithmetical.

Proof. The proof of Lemma 2.2 follows exactly Andrews and Knight [1, Lemma 13].
Suppose towards a contradiction that all ∃-types realized in M are arithmetical.
We consider a forcing partial order on pairs of partial permutations of ω as follows:
(p1, p2) extends (q1, q2) if p1 extends q1 and p2 extends q2. We force in this partial
order over M . Since G is generic over R and thus over M , G can be split into two
permutations of ω, G1 and G2, so that (G1, G2) is generic in this partial order.

We want to show that G1(M)⊕G2(M) computes a representation of the family

of arithmetical sets. Let (p1, p2) force that ϕ
G1(M)
e1 and ϕ

G2(M)
e2 are total and are

representations of Scott sets containing all arithmetical sets. Call these S1 and S2,
respectively.

The following is exactly Andrews and Knight [1, Claim 14].

Claim 2.2.1. S1 ∩ S2 is the collection of all arithmetical sets.

The key observation in the proof of Claim 2.2.1 is as follows: Let (q1, q2) force
that a particular column of S1 is equal to a particular column of S2. If we view qi
as finite partial maps c̄i ∈ ω 7→ d̄i ∈ M , it suffices to know the existential type
of d̄1 or d̄2 to compute the column. This is because this existential type declares
the possible ways that the quantifier-free diagram of G1(M) and G2(M) could be
extended. Since these existential types are assumed to be arithmetical, the column
in both S1 and S2 is arithmetical.

Finally, a computation from G1(M)⊕G2(M) of these two Scott sets gives a com-
putation of a representation of their intersection, thus G1(M) ⊕G2(M) computes
a representation of the collection of all arithmetical sets. But this contradicts An-
drews and Knight [1, Lemma 15]. Thus some ∃-type in M is non-arithmetical. �

Lemma 2.3. Let {pi(x̄) | i ∈ ω} be a countable collection of non-arithmetical
∃-types consistent with T . Let H be Cohen generic over each of the types pi. Let
R, G be sufficiently generic for the forcing partial order P that if WRe = pi, then
some condition forces this. Let M be a model of T computable from R. Then none
of the types pi are realized in M .

Proof. Suppose tpM (ā) = pi. Then some condition forces that WRe = pi for the
appropriate index e. But then pi is arithmetical over the condition, which in turn
is arithmetical over H. This contradicts the fact that H is Cohen generic over each
of the pi. �

Suppose, towards a contradiction, that there are only countably many non-
arithmetical ∃-types. Then Lemma 2.3 gives a model M where none of these
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types are realized. By Lemma 2.2, some non-arithmetical ∃-type is realized in M ,
which yields the contradiction. Thus there are uncountably many non-arithmetical
∃-types, so uncountably many types, contradicting ω-stability. �

2.2. A spectrum of an ω-stable theory that is not a structure spectrum.
Given an infinite set A and a degree d, we say that A is the range of a limitwise
monotonic d-computable function, denoted as A ∈ lwm(d), if there is a d-com-
putable function f(x, s) such that f(x, s) > f(x, t) if s > t (limitwise monotonicity),
lims f(x, s) exists for each x, and A is the range of the limit function lims f(x, s),
i.e., A = {lims f(x, s) | x ∈ ω}.

For any two ∆0
2-sets A and B, we construct an ω-stable theory whose spectrum

is the set of degrees d so that either d >T B or A ∈ lwm(d). We do this by
first constructing a pair of prime structures MA and MB . The countable saturated
model of Th(MA) is recursively presentable, while the other models of Th(MA) are
presentable in any degree d so that A is the range of a limitwise monotonic d-com-
putable function. The model MB is recursively presentable, while any presentation
of a non-prime model of Th(MB) computes B. We then construct a structure M
by “gluing” together MA and MB so that models of Th(M) either represent a pair
of prime models (MA,MB) or a pair of non-prime models (NA, NB). In the first
case, the presentation computes a presentation of MA, so it makes A the range
of a limitwise monotonic function. In the second case, the presentation presents a
nonstandard model of Th(MB), so computes B.

We believe that structure spectra should not have a dual nature such as this, but
are unable to prove a theorem to this effect. Rather, we choose A and B carefully
to ensure that Spec(Th(M)) is not a structure spectrum.

Lemma 2.4. Given infinite ∆0
2-sets A and B, there is an ω-stable structure MA,B

such that

Spec(Th(MA,B)) = {d | d >T B} ∪ {d | A ∈ lwm(d)}.

Proof. Let L1 = {E} where E is a binary relation symbol. For n ∈ ω + 1, we
will write Kn for the n-clique. Let MA be the union of one copy of Kn for each
n ∈ A. Then MA is a prime structure, and the other models of Th(MA) are of the
form MA∪

⋃
i∈I Kω. Then the countable saturated model of Th(MA) is recursively

presentable and the other models are presentable in d if and only if A is the range of
a limitwise monotonic function recursive in d. (This is essentially in Khoussainov,
Nies and Shore [9].)

Fix a recursive function g so that B(x) = lims g(x, s). Let

L2 = {Ui | i ∈ ω} ∪ {cj | j ∈ ω},

where the Ui are unary relations and the cj are constant symbols. Let MB be the
structure with universe ω, where cj is interpreted as the element j and Ui(j) holds
if and only if g(i, j) = 1. Note that MB is a prime recursively presentable structure.
In any non-prime model N ≡ MB , there is an element x so that x 6= cj for all cj .
Then N |= Ui(x) if and only if B(x) = 1 (as if lims g(x, s) = k, then in MB ,
Uj(x) = k for all x except for all but finitely many cj). Thus, any presentation
of N must compute B.

Now, we define L = {S, V,W} ∪ L1 ∪ L2 where S is a binary relation, and V
and W are unary relations. We define the structure M as follows:

• V and W form a partition of M .
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• Relations in L1 hold only on tuples from V and relations in L2 hold only
on elements from W .
• VM ∼= MA in the language L1.
• WM ∼= MB in the language L2.
• S is the graph of a function from V to W .
• For n ∈ A, the kth element of A, S sends Kn in V to the element ck.

We claim that M is bi-interpretable with MA. It follows from the ω-stability
of MA that M is also ω-stable. We interpret MB as MA/E (using the fact that E
is an equivalence relation, because MA is a union of cliques). For each symbol Ui,
the pre-image in MA is either a finite union of finite cliques or is a complement
of a finite union of finite cliques. Thus they are all definable in MA. This gives
the interpretation of MB in MA as MA/E. The disjoint union of MA with MA/E
with S as the projection map gives an interpretation I of M in MA. The obvi-
ous interpretation of MA in M along with I gives a bi-interpretation between M
and MA.

Lastly, we defineM ′ as the ∃2-Marker extension ofM for the relation S. ThusM ′

is bi-interpretable with M . For any N ≡ M , we write N ′ for the bi-interpretable
structure that is elementarily equivalent toM ′. SinceM ′ is bi-interpretable withM ,
Th(M ′) is also ω-stable, and we will show that Spec(Th(M ′)) = {d | d >T B}∪{d |
A ∈ lwm(d)}.

Given any degree d so that A is the range of a limitwise monotonic function recur-
sive in d, the structure M ′ is recursive in d. This can be seen since d presents MA

and MB and d′ presents S, which, by Lemma 1.2, suffices.
Let N be the structure with

V N ∼= MA ∪
⋃
i∈ω

Kω, and

WN ∼= MB ∪ {xi | i ∈ ω},

where S sends V N toWN as inM and sends all ofKi to xi. Note thatN is the result
of the interpretation I in the structure MA∪

⋃
i∈ωKω. Since MA∪

⋃
i∈ωKω �MA,

we have N � M . N ′ is recursively presented in B since V N
′

is recursive, B
presents WN ′ , and the map S is recursive in B′, which suffices by Lemma 1.2.
Thus {d | d >T B} ∪ {d | A ∈ lwm(d)} ⊆ Spec(Th(M ′)).

Now, suppose N ′ is a model of Th(M ′) of degree d. If N ′ is isomorphic to the
model M ′, then N ′ presents MA, thus A is the range of a limitwise monotonic
function recursive in d. If N ′ is not isomorphic to the model M ′, then following
the bi-interpretation, we see that V N

′ 6∼= MA, and therefore there is a copy of Kω

in V N
′
. As M |= ∀x, y (S(x) = S(y)→ E(x, y)), we see that the S-image of an

element of Kω is not equal to cj for any j. Thus WN ′ , and therefore also d,
computes B. Thus {d | d >T B} ∪ {d | A ∈ lwm(d)} ⊇ Spec(Th(M ′)). �

We now wish to construct a particular pair of ∆0
2-sets D and L, where L is in

fact low, such that Spec(Th(MD,L)) is not a structure spectrum. In addition, we
will construct a third set C so that c = deg(C) witnesses that Spec(Th(MD,L)) is
not a structure spectrum. In particular, we will show that c /∈ Spec(Th(MD,L)),
but c ∈ S for every structure spectrum S containing Spec(Th(MD,L)).

The technique we use here for showing that a particular set of Turing degrees
is not a structure spectrum involves a property of structures known as the “c.e.
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extension property”, or “c.e.e.p.” If one knows that a structure has this property, it
becomes much easier to compute copies of the structure. This can be used to show
that a given collection of degrees cannot be a structure spectrum. For example,
Andrews and Miller [2] proved that if a structure M has two presentations that
form a Σ0

1-minimal pair, then M has the c.e. extension property, and then used this
result to prove that the PA degrees are not a degree spectrum of a structure.

Since graphs are universal for degree spectra [5], we will phrase the c.e.e.p. in
terms of graphs. We use the term “subgraph” to mean “induced subgraph”, i.e.,
“submodel” in the model-theoretic sense. (So, for example, all subgraphs of Kω

are isomorphic to Kω or Kn for some n.)

Definition 2.5. Fix a computable copy (ω,E) of the random graph (i.e., the Fräıssé
limit of the set of all finite graphs). A code for a graph G is a subset A ⊆ ω such
that Γ(A) := (A,E � A) ∼= G.

Notation 2.6. We identify subsets of ω with elements of 2ω. So, for α ∈ 2ω giving
the characteristic function for A, Γ(α) := Γ(A). Given a string σ ∈ 2<ω, we write
Γ(σ) as shorthand for Γ(σ0∞).

Definition 2.7. Given a graph G, we say that σ ∈ 2<ω is consistent with G if Γ(σ)
is isomorphic to a subgraph of G. Given σ consistent with G and an embedding
f : Γ(σ)→ G (or, equivalently, an isomorphism between Γ(σ) and a subgraph of G),
we say that τ is consistent with σ, f,G if τ � σ and f extends to an isomorphism
between Γ(τ) and a subgraph of G.

Definition 2.8. We say that a graph G has the c.e. extension property (c.e.e.p.) if
given any σ consistent with G and embedding f : Γ(σ)→ G, the set of all τ ∈ 2<ω

such that τ is consistent with σ, f,G is a c.e. set.

The following notion of “c.e.e.p. cover” was introduced by Kalimullin [8]. It is
central to our proof, being the way in which we exploit the c.e. extension property.

Definition 2.9. Given X,C ⊆ ω, we say that C ⊆ ω2 is a c.e.e.p. cover for X
if for every e ∈ ω, if ΦXe is a code for a graph G with the c.e.e.p., then there is a
code A for G such that A =∗ C [e] (the eth column of C).

Lemma 2.10. Let C be a c.e.e.p. cover for X, then every c.e.e.p. graph G pre-
sentable by X is also presentable by C.

Proof. Using the extension property of the random graph, any presentation of a
graph G can compute a set A so that Γ(A) ∼= G. Thus if G is presentable by X,
then X computes a code for G. If G has the c.e.e.p., then there is some e so that
C [e] =∗ A. Thus A 6T C, so G is presentable by C as well. �

We are now ready to construct L and D so that Spec(Th(MD,L)) is not a struc-
ture spectrum. The construction is rather technical, but we start with an arbitrary
noncomputable low set L, and use L to construct D and C in such a way that D
is ∆0

2 and C is a c.e.e.p. cover for L, but C does not compute L, nor present D in
a limitwise monotonic fashion (i.e., D /∈ lwm(deg(C))). The entire construction is
performed by 0′, so using the fact that L is low, we may ask L′-questions during
the construction.

One unusual feature of our construction is that it is a tree construction, but there
is no approximation to the true path. We have a tree T of nodes, which all have
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different guesses about whether various functions ΦLe give codes for graphs with
the c.e.e.p., and, if so, about the corresponding indices of c.e. sets giving consistent
finite extensions. However, rather than approximating a true path at stage s, and
acting for nodes along this stage s approximation, we instead act for all nodes on T
that have been initialized by stage s, and that might possibly end up along the
true path. The true path is only defined after the construction is complete, and
is then used to define C; both the true path and C will be recursive in 0′′′. In
fact, D is constructed over the course of the “construction”, but C is not. Instead,
we construct a tree of possible finite approximations to C. Once the construction
is complete, the true path through T induces a path through the tree of finite
approximations to C, which then defines C.

This is not a priority construction, and the nodes on the tree never injure each
other. Instead, each node acts entirely independently from all the others to define
a finite approximation to C, which it then passes to its children when they are
activated. At the end of the construction, when the true path is defined, we ignore
all of the approximations produced by nodes not along the true path, and integrate
the approximations produced by true path nodes, at the stages when they are first
activated, to obtain C.

The strategy to make C a c.e.e.p. cover for L acts as a passive global requirement:
We are constantly extending a finite approximation to C (or rather, extending the
tree of finite approximations), and if ΦLn is a code for a graph with the c.e.e.p., then
every time we extend the nth column of C, it must be consistent with being a code
for that graph (modulo some garbage which never changes). We must also take an
active role by constructing the isomorphism, and every so often we must extend
the isomorphism we construct.

The strategy to make L 6= ΦCe involves asking L′-questions: When we extend C,
we can ask L′ whether it is possible to extend in such a way that ΦCe 6= L. We
must be careful not to violate our passive condition on C when we do this. This is
where we take advantage of the c.e.e.p.: We can assume we have a c.e. index for the
collection of valid extensions of C, and use that index to phrase the L′-question.

Finally, the strategy to make D not the range of a limitwise monotonic C-
computable function fC involves choosing a follower x, and at each stage s extend-
ing C in such a way to force fC(x, t) to be large, then choosing a new element of D
which is not fC(x, t). In so doing, either we cause λt.fC(x, t) to increase infinitely
often, whence limt f

C(x, t) does not exist, or else we cause fC(x, t) to become stuck
at some largest possible value that is not in D.

Lemma 2.11. Given a noncomputable low set L, there are sets D and C such that

(1) D is ∆0
2,

(2) C is ∆0
4,

(3) C is a c.e.e.p. cover for L,
(4) L �T C, and
(5) D is not the range of any limitwise monotonic function f 6T C.

Proof. We perform a 0′-oracle construction using the tree

T = {(eji )i+j<n | n ∈ ω, e
j
i ∈ ω ∪ {∗}}.

That is, nodes on this tree consist of triangular arrays of elements of ω ∪ {∗},
indexed by i and j, where i+j < n. The entries in the jth column of the array give
a succession of guesses for c.e. indices witnessing the c.e.e.p. for Γ(ΦLj ). A ∗ entry
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indicates a guess that Γ(ΦLj ) does not have the c.e.e.p. The order is just extension

of these triangular arrays; that is, the node (eji )i+j<n is an extension of each of the

nodes (eji )i+j<m for m < n. We call n the length of α = (eji )i+j<n, and it is also
the number of predecessors of α.

Each node on the tree begins the construction as inactive, and at each stage we
activate finitely many inactive nodes. We may also cancel some active nodes, in
which case they become inactive (and will never again become active). To each node

α = (eji )i+j<n, if α begins stage s as active, we have the following data attached
to α:

• A finite partial function gα,s : ω2 → 2 consisting of garbage. (This garbage
will be what causes the finite differences between the columns of C and the
codes for graphs isomorphic to some Γ(ΦL).)

• The finite set Eα = {j < n | (∀i < n−j) eji 6= ∗}. (Note: This is determined
entirely by α; we need not even look at the construction to determine Eα.)
• For each e ∈ Eα, a good string σα,e, together with an isomorphism δα,e from

Γ(σα,e) to some subgraph of Γ(ΦLe ). (This is fixed when α is activated, and
thenceforth never changes.)
• For each e ∈ Eα, a non-bad string τα,e,s consistent with σα,e, δα,e,Γ(ΦLe )

(at least, in the event that ΦLe is total).
• We summarize the above by writing Cα,s, which is also a finite partial

function from ω2 → 2, given by

Cα,s(e, x) =


gα,s(e, x) (e, x) ∈ dom(gα,s),

τα,e,s(x) (e, x) /∈ dom(gα,s) and x ∈ dom(τα,e,s),

↑ otherwise.

• For each of the first s many limitwise monotonic oracle functions fC , we
have an associated follower xα,f

Additionally, we have the following global data:

• A sequence T0, T1, T2, . . . Ts of thresholds.
• A sequence S0, S1, S2, . . . Ss of markers.

A note on terminology: Both the “good” and “non-bad” strings with subscript e
will be initial segments of codes for graphs isomorphic to Γ(ΦLe ) in the event that
ΦLe is total. The difference is that “good” strings come together with partial isomor-
phisms with Γ(ΦLe ), while the “non-bad” strings do not come with any particular
partial isomorphism attached.

Construction:
At stage 0, we activate the root node with trivial data (each set/function/string

is empty).
At stage s+ 1, given the stage s data for all active nodes, we act for each active

node, and then activate the least inactive child of each active node. During the
action, we need a notion of “α-consistency.”

Definition 2.12. Given the data Cα,s attached to α at stage s (which we think
of as coming with the specifications of what is the garbage gα, what are the good
strings σα,e with associated partial isomorphisms δα,e, and what are the non-bad

strings τα,e,s), we say that an extension Ĉα,s ⊇ Cα,s (with associated ĝα ⊇ gα,
σ̂α,e = σα,e, and τ̂α,e,s ⊇ τα,e,s) is α-consistent if the following hold:
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• dom(ĝα) \ dom(gα) is disjoint from Eα × ω, and
• for each e ∈ Eα, there is an isomorphism of Γ(τ̂α,j,s) with a subgraph of

Γ(ΦLte,t) (for some t) that extends δα,e.

Note that since L is low, we can 0′-computably check, given Cα,s, whether Ĉα,s is
a consistent extension.

When we act, we take five steps. Steps 1–4 are designed to ensure that D is
not the range of a limitwise monotonic function computable from C, and Step 5 is
designed to ensure that C does not compute L. Step 5 also acts to ensure that C
is a c.e.e.p. cover for L. However, we also take care when we define Cα,s+1 in
Step 3 that this is consistent with making C a c.e.e.p. cover for L (at least, under
the hypothesis that α is on the true path of the construction).

(1) Pick the new threshold Ts+1 to be larger than Ts+k, where k is the number
of active followers xα,f , plus the number of active nodes α (which is the
number of followers xα,fs that will be defined in the next step).

(2) For each active α, define a follower xα,fs where fs is the sth limitwise mono-
tonic oracle function. This follower should be such that fXs (xα,fs , t) > Ts
for some α-consistent extension X of Cα,s and some t. (We can 0′-com-
putably find such a follower, or determine that no such follower exists. If
no such follower exists, we do not choose a follower xα,fs , as we will not
need one.)

(3) For each active α, we will define Cα,s+1 by extending Cα,s a total of s+ 1
times, once for each of the first s+ 1 limitwise monotonic functions:
• Set C0

α,s+1 = Cα,s.
• For each i 6 s, use the 0′-oracle to find an α-consistent extension
Ci+1
α,s+1 of Ciα,s+1 and a stage t where fCi (xα,fi , t) > Ts+1, if pos-

sible, or where fCi (xα,fi , t) attains the maximum possible value, if
fCi (xα,fi , t) > Ts+1 is impossible. (It may be that “undefined” is the
largest possible value, but only if it is impossible to find an α-consistent
extension which makes fCi (xα,fi , t) defined.)

• Set Cα,s+1 = Cs+1
α,s+1.

(4) Choose Ss+1 to be the least value larger than Ts which is not any of the
largest possible values found in Step 2. (Note that by choice of Ts+1, we
have Ts < Ss+1 < Ts+1.)

(5) For each active α, let β be the least inactive child of α. We activate β. We
define the data attached to β as follows:
• gβ,s+1 = gα,s+1.

• Eβ is determined by β = (eji )i+j<n.

• Use 0′ ≡T L′ to test if there is some finite partial function Ĉ : ω2 → 2
(with downwards-closed domain) such that Ĉ ⊇ Cα,s+1 and, for each

j ∈ Eβ , if ejn−j 6= ∗, then the string τj (such that σα,j
aτj extends

τα,j,s+1 and agrees with the jth column of Ĉ off of dom(gα,s+1)) is in
Wejn−j

, and for some x,

ΦĈn (x)↓6= L(x).

This is not quite the same as a β-consistent extension Ĉ where ΦĈn 6=
L, because we use the c.e. indices we guessed to measure consistency,
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rather than directly looking at Γ(ΦLe ). If there is some such Ĉ, define

gβ,s+1 to be the union of gα,s+1 with the part of Ĉ in the non-Eβ
columns, and define σ̂β,j = σα,j

aτj . Otherwise, define gβ,s+1 = gα,s+1

and σ̂β,j = τα,j,s+1. (Every j ∈ Eβ is also in Eα, so this makes sense,
with the exception of j = n − 1. One should interpret τα,n−1,s+1 as
the empty string, and δα,n−1 as the empty function.)

• For each e ∈ Eβ , we search for a σ � σ̂β,e and an isomorphism δ
from Γ(σ) to some subgraph of Γ(ΦLe ) extending δα,e and containing
the least element of Γ(ΦLe ) not in the range of δα,e. (Using L′ 6T 0′,
we can check whether such an extension exists.) If such an extension
is found, then define σβ,e = σ and define δβ,e = δ. If no such extension
exists, then cancel β.

• For each e ∈ Eβ , we define τβ,e,s+1 = σβ,e.
• For each of the first s+ 1 limitwise monotonic oracle functions fC , we

define xβ,f = xα,f (provided that α had some follower xα,f ).
Notice that the way we have defined the stage s+ 1 data attached to β, we
have Cβ,s+1 ⊇ Cα,s+1. (It may or may not be the case that Cβ,t ⊇ Cα,t for
t > s+ 1, but this will not matter.)

For each α, let sα be the stage when α is activated. We define the true path Λ
inductively by letting the empty string λ ⊂ Λ, and, given α = (eji )i+j<n ⊂ Λ, the

true child of α is also on Λ, where the true child is the node (eji )i+j<n+1 for the least

c.e. index ejn+1−j for the set of τ such that σα,j
aτ is consistent with σα,j , δα,j ,Φ

L
j

(if ΦLj is total and the set of such τ is c.e.), and is ∗ otherwise. Note that 0′′ can

determine whether ΦLj is total (using the fact that L is low). If it is total, then L can
enumerate the set of α-consistent extensions, and hence L′′ ≡T 0′′ can determine,
for each e, whether e is a c.e. index for the set of such extensions. Therefore, 0′′′

can determine whether an index exists, and, if so, what the least index is, so can
compute the true child of α (uniformly in α ∈ Λ), which means Λ is ∆0

4.
We define C =

⋃
α∈Λ Cα,sα . By the note at the end of Step 5 of the construction,

this union is well defined. The way we have defined C, it is a function from ω2 → 2,
but we can regard it as a subset of ω in the usual way (via a standard pairing
function). Since the true path Λ is ∆0

4 and since Cα,sα is ∆0
2 uniformly in α, the

set C is also ∆0
4.

We define D = {S0, S1, S2, . . .}. Since D was enumerated in increasing order
during the 0′-computable construction, D is ∆0

2.

Verification:
When we defined C and D above, we verified that they were ∆0

4 and ∆0
2, respec-

tively. We must check that C is a c.e.e.p. cover for L, that C does not compute L,
and that D is not limitwise monotonic in C. In order to prove these three things,
we will first need two preliminary lemmas.

Claim 2.11.1. Define αs to be the longest node along the true path which is active
at stage s, and let Cs = Cαs,s. Then C =

⋃
s Cs.

Proof. We simply observe that if β immediately follows α along the true path, and
sα < s < sβ , then

Cα,sα ⊆ Cs = Cαs,s ⊆ Cβ,sβ . �
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Claim 2.11.2. Suppose ΦLe is a code for a graph with the c.e. extension property.
Then for all α ∈ Λ with |α| > e, we have e ∈ Eα.

Proof. We argue by induction on the length of α that if α ∈ Λ and |α| > e,
where ΦLe is a code for a graph with the c.e.e.p., then e ∈ Eα. This is trivially
true for |α| 6 e. Suppose it is true for α of length at least e, and β is the true
child of α. By construction, σα,e is a code for a finite graph isomorphic (via δα,e)
with a subgraph of ΦLe , and so the set of all τ such that σα,e

aτ is consistent with
σα,e, δα,e,Φ

L
e is c.e. This in turn implies that β extends α with a non ∗ term in the

eth column. Since either e ∈ Eα (which means that no ∗ terms appeared in the eth
column of α) or |α| 6 e (which means α had no eth column), it is also true that no
∗ terms appear in the eth column of β. This means e ∈ Eβ . �

Claim 2.11.3. C is a c.e.e.p. cover for L.

Proof. Suppose ΦLe is a code for a graph with the c.e. extension property. By
Claim 2.11.2, e ∈ Eα for all α ∈ Λ with |α| > e, so for all but finitely many α ∈ Λ we
have defined a string σα,e and a partial isomorphism δα,e : Γ(σα,e)→ Γ(ΦLe ), which
extend as α moves down the true path. Let A =

⋃
α∈Λ σα,e, and let δ =

⋃
α∈Λ δα,e.

By definition, σα,e is the eth column of Cα,sα , modulo a finite initial segment
determined by gα,sα . Moreover, for α ∈ Λ with e ∈ Eα, gα,s is never extended in
the eth column, and when a child β of α is activated, it inherits gα,sβ as its gβ , so
the finite initial segments in column e determined by gα,sα are all the same, for all
α ∈ Λ with |α| > e. Thus A is finitely different from the eth column of C, and δ is
an isomorphism from Γ(A) to a subgraph of Γ(ΦLe ). Since the range of δβ,e contains
the least element of Γ(ΦLe ) not in the range of δα,e (where α is the parent of β),
this subgraph is, in fact, all of Γ(ΦLe ). This shows that C is a c.e.e.p. cover. �

Claim 2.11.4. C does not compute L.

Proof. We will show that L 6= ΦCn . Let β ∈ Λ be of length n, and let α be β’s
parent node. During the construction, when β was activated (at stage sβ), we

defined Cβ,sβ to be an extension of Cα,sβ such that for each j in Eβ , if ejn−j 6= ∗,
then the string τj giving the extension in column j from Cα,sβ to Cβ,sβ is in Wejn−j

.

Moreover, ejn−j is the least c.e. index for the set of τ such that σα,j
aτ is consistent

with σα,j , δα,j ,Φ
L
j , so all future finite extensions Ĉ where Cβ,sβ ⊆ Ĉ ⊂ C obey this

same constraint.
While satisfying these constraints, we extended Cα,sβ in such a way that for

some x, we have L(x) 6= Φ
Cβ,sβ
n (x) if that was possible, giving us two cases to

consider. If it was possible, then L 6= ΦCn and we are done. If it was not possible,

then for every x and every finite extension Ĉ of Cα,sβ obeying the constraint, if

ΦĈn (x)↓, then ΦĈn (x) = L(x). There must be some x0 such that for all constraint-

obeying finite extensions Ĉ, we have ΦĈn (x)↑, or else this would give an algorithm

for computing L. (Since whether Ĉ obeys the constraint is determined by the c.e.

indices eji , the set of all finite constraint-obeying extensions is c.e.) Thus in this
case, ΦCn (x0)↑. So, either way, we obtain ΦCn 6= L. �

Claim 2.11.5. D is not the range of a limitwise monotonic C-computable function.
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Proof. We will show that D is not the range of lims f
C
e (−, s). Let α be the longest

node along the true path Λ that was active at the beginning of stage e of the
construction. There are two possible cases to consider.

Case 1: We did not define any follower xα,fe at stage e. Because of how we choose
followers, that means that for every t > e, every X ⊇ Cα,e which is α-consistent at
stage e, and every x, we have fXe (x, t) 6 Ts. Hence the range of lims f

C
e (−, s) is

bounded by Ts. Since D is infinite, it cannot be the range of lims f
C
e (−, s).

Case 2: We defined a follower xα,fe at stage e. Because of how followers are
inherited when new nodes are activated, we have xβ,fe = xα,fe for every β ⊂ Λ
extending α. Using the approximation C =

⋃
s Cs, when we extended Cs to Cs+1

at stage s > e, we defined Cs+1 to either force f
Cs+1
e (x, t) > Ts+1 for some t

(if that was possible), or else to force fCse (x, t) to take the largest possible value
otherwise (which must be in the interval (Ts, Ts+1) at the first stage s when we
were unable to force it above Ts). If the latter ever occurs, the unique value of D in
that interval, namely, Ss+1, was chosen different from that largest possible value,
so limt f

C
e (x, t) /∈ D. Otherwise, the former occurs at every stage, and hence

limt f
C
e (x, t) =∞. �

This completes the verification of Lemma 2.11. �

We can now prove the main result of this section.

Theorem 2.13. There is an ω-stable theory whose spectrum is not the spectrum
of any structure.

Proof. Fix L low noncomputable, and let C and D be as in Lemma 2.11. Let MD,L

be as in Lemma 2.4, i.e.,

Spec(Th(MD,L)) = {e | e >T L} ∪ {e | D ∈ lwm(e)}.

This is an ω-stable theory, and since L 66T C and D is not the range of a lim-
itwise monotonic C-computable function, c = degC is not in Spec(Th(MD,L)).
Suppose G is a graph so that S = Spec(G) is a structure spectrum containing
Spec(Th(MD,L)). Consider the structure N formed by taking the union of one
copy of Kn for each n ∈ D. Then Spec(N) = {e | D ∈ lwm(e)}. It is also clear
that N has the c.e.e.p. It follows by Andrews and Miller [2, Prop. 3.5] that there
are degrees e1, e2 ∈ Spec(N) which form a Σ0

1-minimal pair, i.e., any set that is
both Σ0

1 in e1 and Σ0
1 in e2 is already Σ0

1. Thus, since e1, e2 ∈ Spec(G), it follows
again from Andrews and Miller [2, Prop. 3.5] that G has the c.e.e.p. Hence C, being
a c.e.e.p. cover for L, can compute a copy of G, so c ∈ S. Therefore, no structure
spectrum can equal Spec(Th(MD,L)). �

3. Almost Everywhere Theories

We now show that there are only countably many almost everywhere theories
(i.e., theories T such that Spec(T ) has measure 1), and that they are all Solovay
theories (i.e., that T ∩ ∃n is uniformly Σ0

n). We give several examples of almost
everywhere theory spectra, including some known not to be structure spectra. We
believe that the following theorem and the lemma in its proof are known, but we
include proofs for completeness.

Theorem 3.1. If T is an almost everywhere theory, then T is a Solovay theory.
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Proof. For an almost everywhere theory T , we fix a recursive function ϕe so that
{S | ϕSe |= T} has positive measure. By the Lebesgue Density Theorem, there is a
string σ so that the relative measure of {S | ϕSe |= T} above σ is greater than 1

2 ,

i.e., µ({S � σ | ϕSe |= T})/µ({S | S � σ}) > 1
2 . By changing e to an index e′ where

ΦSe′ = Φσ
aS
e , we may assume µ({S | ϕSe |= T}) > 1

2 . Thus, for any ∃n-sentence
ψ := ∃x̄1 . . . Qnx̄nψ0(x̄),

ψ ∈ T iff µ
(
{S | N |= ∃x̄1 . . . Qnx̄n(ϕSe |= ψ0(x̄))}

)
>

1

2
.

This can be uniformly translated into a Σ0
n-question.

Lemma 3.2. For any arithmetical formula ϕ(x̄, S), there is a formula ψ(x̄) of the
same arithmetical complexity so that for every x̄,

N |= ψ(x̄) iff µ ({S | N |= ϕ(x̄, S)}) > 1

2
.

Moreover, there is a recursive function mapping ϕ to ψ.

Proof. We prove the result by induction on the arithmetical complexity of the
formula ϕ. If ϕ is Σ0

1, then ψ(x̄) is simply

∃m ∃ pairwise incomparable σ1, . . . σm

∑
i6m

2−|σi| >
1

2

 ∧ ∧
i6m

ϕ(x̄, σi)

 .

Taking negations gives the result for Π0
1-formulas.

Now, we prove the result for Σ0
n-formulas, assuming it holds for Π0

n−1-formu-
las. Let ϕ be a Σ0

n-formula ∃y1∀y2 · · ·Qyn(ϕ0(x̄, ȳ, S)). We rewrite ϕ(x̄, S) as
∃mχ(x̄,m, S) where

χ(x̄,m, S) :=
∨
y1<m

∀y2 · · ·Qyn(ϕ0(x̄, ȳ, S)).

Then ϕ(x̄, S) holds for a collection of S of measure > 1
2 if and only if there is

some m so that χ(x̄,m, S) holds for a collection of S of measure > 1
2 . Using the

inductive hypothesis, let χ(x̄,m, S) holding for a collection of S of measure > 1
2 be

equivalent to a Π0
n−1-formula ψχ(x̄,m). Then ϕ(x̄, S) holds for most S if and only

if ∃mψχ(x̄,m), which is a Σ0
n-formula. �

This completes the proof of Theorem 3.1. �

It follows from the previous theorem that every almost everywhere theory is
computable from 0(ω), so there can only be countably many such theories:

Corollary 3.3. There are only countably many almost everywhere theories. �

Thus there is a set of degrees of measure 1 all of which are contained in every
almost everywhere theory spectrum. Without even daring a conjecture, we ask:

Question 3.4. Which are the degrees contained in every almost everywhere theory
spectrum?

Though we do not know how to characterize the degrees in every almost every-
where theory spectrum, we can characterize the degrees in the spectrum of every
Solovay theory. We say that a theory is uniformly arithmetical if there is an arith-

metical function f such that for each n, if f(n) = (m, k), then T ∩∃n is Φ0(k)

m . The
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proof shows that the degrees that compute models of every Solovay theory are the
same as the degrees that computes models of every uniformly arithmetical theory.

Theorem 3.5. The following are equivalent for any Turing degree d:

(1) d is contained in Spec(T ) for every uniformly arithmetical theory;
(2) d is contained in Spec(T ) for every Solovay theory;
(3) d computes a presentation of a nonstandard model of Th(N,+, ·).

Proof. (1) implies (2) is trivial. (2) implies (3) follows by the construction of An-
drews and Knight [1]. In particular, they construct a single Solovay theory T so
that Spec(T ) is precisely the degrees computing presentations of nonstandard mod-
els of Th(N,+, ·). (3) implies (1) follows by a theorem of Knight [10, Theorem 2.4].
In particular, a theorem of Solovay refined by Marker [10, Corollary 3.3] shows that
the degrees that compute presentations of nonstandard models of Th(N,+, ·) are
exactly those that compute enumerations of Scott sets containing every arithmeti-
cal degree. If X is such an enumeration and T is uniformly arithmetical, then X ′′

uniformly computes the set of X-indices for T ∩∃n. Thus, by [10, Theorem 2.4], X
computes a model of T . �

We will now show that, unlike in the case of spectra of structures (cf. Kalimullin
[8]), for every arithmetical degree a, {d | d 66 a} is the spectrum of a theory. The
proof can be extended to show that for any arithmetical sequence of arithmetical
sets (Ai)i∈ω, {d | ∀i (d 66 deg(Ai))} is the spectrum of a theory. Note that any
such spectrum has measure 1.

Theorem 3.6. Let a be an arithmetical degree. Then {d | d 66 a} is the spectrum
of a theory.

Proof. For a (set A of) degree a, we create a theory T below so that any arithmetical
degree d computes a model of T if and only if d computes a dense set of elements
in 2ω that are each 66T A. The role of the U relations is to code 2<ω into the
1-types of our theory. The role of (N,+, ·) is to be able to define when an element
of 2ω (as represented by the 1-types in the U relations) is 6T A. The V relations
enforce that in any model with (N,+, ·) standard, there is no realized element of 2ω

(as represented by the 1-types in the U relations) that is 6T A.
Fix the language

L′ := {Uσ(x) | σ ∈ 2<ω} ∪ {Vi(n, x) | i ∈ ω} ∪ {N(x),+(x, y, z), ·(x, y, z)}.
Fix the theory T ′ generated by the following axioms:

(1) U∅ and N form a partition of the universe into two infinite pieces, and +
and · hold only on triples from N.

(2) ∀n∀x(Vi(n, x)→ (N(n) ∧ U∅(x))).
(3) (N,+, ·) |= TA.
(4) For all σ ∈ 2<ω, we have the axioms

∀x [Uσ(x)↔ [Uσ0(x) ∨ Uσ1(x)] ],

∀x¬[Uσ0(x) ∧ Uσ1(x)], and

∃xUσ(x).

(5) For all i so that ΦAi is a total {0, 1}-valued function and for each n, we have
an axiom of the form

∀x [Vi(n, x)↔ Uσ(x)] ,
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where |σ| = n and σ ≺ ΦAi .
(6) For all i so that ΦAi is a total {0, 1}-valued function, we have the axiom

∀n∃∞x[Vi(n, x) ∧ ¬Vi(n+ 1, x)].

(7) For all i so that ΦAi is a total {0, 1}-valued function, we have the axiom

∀n∀x [Vi(n+ 1, x)→ Vi(n, x)] .

(8) If i and j are so that ΦAi = ΦAj are total {0, 1}-valued functions, then we
have the axiom

∀x∀n [Vi(n, x)↔ Vj(n, x)] .

(9) For all i so that ΦAi is not a total {0, 1}-valued function, we have

∀n∀x¬Vi(n, x).

(10) For each i, we have the axiom

∀x∃n¬Vi(n, x).

First of all, note that Claim 3.6.3 below implies that T ′ is consistent. Our proof
of Theorem 3.6 now proceeds in three claims.

Claim 3.6.1. T ′ is a complete theory.

Proof. Consider two saturated models M and N of T of the same size κ. Certainly
(N,+, ·)M ∼= (N,+, ·)N , as they are both saturated models of the complete theory
TA by axiom 3. We need only extend this isomorphism to U∅ as well. By saturation
and axiom 4, in both M and N , for each ρ ∈ 2ω, there must be κ many elements
in
⋂
σ�ρ Uσ. If ρ 66T A, then by axioms 5, 7 and 9, Vi(n,−) holds only for all n

below some fixed standard integer, for any element of
⋂
σ�ρ Uσ. Otherwise, fix i

such that ρ = ΦAi . By axiom 8, the only atomic formulas defining sets nontrivially
intersecting

⋂
σ�ρ Uσ are equivalent to Vi(n,−) for nonstandard n. By axiom 6,

there are κ many realizations in both M and N of Vi(n, x)∧¬Vi(n+ 1, x) for each
nonstandard n ∈ (N,+, ·)M or nonstandard n ∈ (N,+, ·)N , respectively, so we can
extend the isomorphism to these. By axioms 7 and 10, these possibilities exhaust
all elements of M and N . �

Now fix k so that a 6 0(k−3). Let T be the theory obtained by abstracting each
of the Vi relations by k quantifiers. T is complete, as T ′ is complete. We claim that
Spec(T ) = {d | d 66 a}.

Claim 3.6.2. Spec(T ) ⊆ {d | d 66 a}.

Proof. Suppose towards a contradiction that M |= T and M 6T A. Choose an
element b ∈ UM∅ , to which we associate the unique X ∈ 2ω such that for each k,

M |= UX�k(b). Note that M computes X. Since M is arithmetical, (N,+, ·)M must
be the standard model of TA by Feferman [3]. Thus, axioms 5 and 10 imply that
X 66T A. Thus M cannot be computable from a. �

Claim 3.6.3. Spec(T ) ⊇ {d | d 66 a}.

Proof. Let d be a degree not below a. Then d uniformly computes a countable
dense collection S of reals so that X ∈ S implies X 66T A. Using this, d computes
a structure in the language {Uσ | σ ∈ 2<ω} ∪ {N,+, ·} where the elements of U∅
are the elements of S, and for all X ∈ S, Uσ(X) iff σ ≺ X. By Lemma 1.2, we
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only need the correct interpretations of each Vi to be uniformly Σ0
k in d for d to

compute the associated model of T . By axioms 5 and 9, Vi(n,X) holds iff ΦAi is
a total {0, 1}-valued function and, if it is, Uσ(X) holds, where σ = ΦAi � n. Using
the fact that A 6 ∅(k−3), each Vi is, in fact, uniformly Π0

k−1 in d. �

This completes the proof of Theorem 3.6. �

Theorem 3.7. Let f be a total recursive function. For each j, let Aj be the
arithmetical set with arithmetical index f(j). Then there is a theory T so that
Spec(T ) = {d | ∀j (d 66 deg(Aj))}.

Proof. The proof follows the above construction. The minor required changes are as
follows: For each Aj , we again have a sequence of Vi,j to enforce that each element

is not equal to Φ
Aj
i . The function f gives us uniformly an index kj so that 0(kj−3)

computes Aj . Again, we abstract each of these Vi,j relations using a kj-quantifier
abstraction. The rest of the proof remains the same. �

Whether the set of non-arithmetical degrees is the spectrum of a structure is a
long-standing open question. The non-hyperarithmetical analog was recently shown
to be a structure spectrum by Greenberg, Montalbán and Slaman [4], while it is
not a theory spectrum by Andrews and Miller [2]. In contrast to this, the following
is an immediate consequence of Theorem 3.7.

Corollary 3.8. The set of non-arithmetical degrees is a theory spectrum. �

However, we also have the following:

Corollary 3.9. A countable intersection of theory spectra need not be a theory
spectrum

Proof. Let {ai}i∈ω be a countable anti-chain of arithmetical degrees. Then for each
S ⊆ ω, DS :=

⋂
i∈S{d | d 66 ai} is a countable intersection of theory spectra. But

these form an uncountable family of measure-1 subsets of the Turing degrees. By
Corollary 3.3, uncountably many of these are not theory spectra. �

4. Open Questions

We finish with two questions, both left over from Section 3. The first we have
already stated explicitly:

Question 3.4. Which are the degrees contained in every almost everywhere theory
spectrum?

In Theorem 3.6, we showed that every arithmetical degree a has the property
that {d | d 66 a} is a theory spectrum. In relation to this, we ask:

Question 4.1. What are the degrees a so that {d | d 66 a} is a theory spectrum?
Are there any non-arithmetical such degrees? Are all such a at least hyperarith-
metical? Note that all such a are Π1

1-definable as collections of sets.
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